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SUMMARY

The effects of crossflow and shock strength on transition of the
laminar boundary layer behind a swept leading edge have been investigated
analytically and with the aid of available experimental data.

An approximate method of determining the crossflow Reynolds number on
a leading edge of circular cross section at supersonic speeds is presented.
The applicability of the critical crossflow criterion described by Owen and
Randall for transition on swept wings in subsonic flow was examined for the
case of supersonic flow over swept circular cylinders. A wide range of
applicability of the subscnic critical values is indicated. The corre-
sponding magnitude of crossflow velocity necessary to cause instability
on the surface of a swept wing at supersonic speeds was also calculated
and found to be small.

The effects of shock strength on transition caused by Tollmien-
Schlichting type of instability -are discussed briefly. Changes in
local Reynolds number, due to shock strength, were found analytically to
have considerably more effect on transition caused by Tollmien-Schlichting
instability than on transition caused by crossflow instability. Changes
in the mechanism contrclling transition from Tollmien~Schlichting instabil-
ity to crossflow lnstablility were found to be possible as a wing is swept
back and to result in large reductions in the length of laminar flow.

INTRODUCTION

The need for swept wings on hypersonic vehicles to reduce the leading-
edge heat transfer and leading-edge drag has been well recognized. The
sweep of the wing, however, has a large adverse effect on transition of
the laminar boundary layer and causes a relative increase in turbulent
wetted area with accompanying higher heating rate and higher drag. Various
reasons for this adverse effect of sweep on transition of the laminar
boundary layer have been postulated. Furthermore, several phenomena may
operate simultaneously to affect transition in different ways, thereby
making the problem exceedingly complex.



There are at least two basic effects on the local flow which result
from sweeping a wing: (1) crossflow resulting from spanwise pressure
gradients (The effect of crossflow on transition was first recognized and
studied by Owen and Randall (ref. 1) at subsonic speeds.); (2) leading-
edge shock-wave effects due to changes in shock strength with sweep (The
effect of shock strength on transition, firs~. studied by Moeckel (ref. 2)
with respect to blunting of wedges and cones. is to reduce the local
Reynolds number thereby increasing the length of laminar flow.).

The purpose of the present report is to discuss the above effects
and their relation to the over-all problem o:' boundary-layer transition
on swept wings. This discussion includes a brief summary statement of
some earlier results, and also includes devel.opment and presentation of
new results. The new results are obtained from analysis and from study
of available experimental data. Principal new results are in the areas
of a crossflow instability criterion for supersonic speeds, the influence
of bow-shock-wave strength on crossflow instebility, and the necessary
thickness of an entropy layer to be effective in postponing transition.

SYMBOLS
D diameter of leading edge
M Mach number
e pressure
R Reynolds number based on x, pUx -
PoUoX1
R transition Reynolds number, ———
0
T temperature
8) resultant velocity
W velocity parallel to surface and normsl to boundary-layer-edge
streamline measured in a plane parallel to the local tangent
plane
X distance from leading edge, parallel to center line
y distance normal to local tangent plane
B crossflow velocity parameter, %i
4 ratio of specific heat at constant pressure to that at constant

volume

H O\ >



H o\

o boundary-layer thickness
8 position angle on circular cylinder, O at stagnation line
A sweep angle of wing leading edge
8 coefficient of viscosity
p air density
T thickness of high entropy layer
X crossflow Reynolds number (See eq. (1).) .
W exponent in viscosity relationship, ﬁi = <§i>
0

Subscripts
e boundary-layer-edge conditions
1 laminar
max maximum value
s wing leading-edge stagnhation line
t stagnation condition
W wall conditions
o) free-stream stagnation conditions
o0 free-~stream static conditions
My Mach number normal to leading edge at a given sweep angle

ANATYSIS AND DISCUSSION

Crossflow Effects

Wings with sweptback leading edges and finite thickness will, in
general, develop spanwise pressure gradients. These gradients give rise
to crossflow, or secondary flow, as it is sometimes referred to, which
can be an important consideration in the transition of the laminar



boundary layer on swept wings.
Shown in sketch (a) is a typical
crossflow velocity profile.
‘ Th's is the velocity profile
1.0 wh.ch occurs normal to the
) 4 _ boindary-layer edge streamline.
Intlection point It can be shown that this pro-
file has both a maximum and an
.g. inflection point.
lgmax Crossflow instability.- In
their studies of transition on
swiept wings at subsonic speeds,
Ow:n and Randall (ref. 1) found
W = Ag thit crossflow had an adverse
lfe ef’ect on laminar boundary-layer
stability. They showed evidence
Sketch (a) of a system of uniformly spaced
vortices in the boundary layer
with axes parallel to the stream direction. The vortices are believed to
result from the inflection point in the cross’low velocity profile. Later,
Gregory, Stuart, and Walker (ref. 3) showed theoretically that the cross-
flow velocity profile is unstable to small disturbances.

Owen and Randall further found that they could correlate the abrupt
formation of these streamwise vortices and aliso the development of complete
turbulence (i.e., transition) with a crossflow Reynolds number, X, defined
by:

¥ = PeVmax® (1)
He

where wpo, 1s the maximum crossflow velocit;. They found the critical
values of crossflow Reynolds number for vorte:: formation and for transition
to be 125 and 175, respectively. These value:s were for regions very near
the leading edge of swept wings at cubsonic speeds. More recent work by
Boltz, Kenyon, and Allen (ref. 4), also at subsonic speeds but including
regions farther downstream of the leading edge, gives values of 135 to

190 for vortex formation and 190 to 260 for transition.® Some work by
Scott-~Wilson and Capp at Mach number 1.61 (re:. 5) indicates that these
values may be somewhat smaller in supersonic :'low. However, because of

the complexity of calculating the compressible laminar boundary layer over
three~-dimensional surfaces, no numerical values of critical crossflow
Reynolds number have been established for supersonic flow past swept wings.
Because of this complexity, the more limited case of supersonic flow over
a swept circular cylinder will be considered.

1In view of the approximations made for the calculation of the
crossflow Reynolds number and the difference in test conditions (e.g.,

stream turbulence level), the agreement between the results of references
1 and 4 is considered to be good.
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Crossflow on & circular leading edge.- In the present paper, a method
is developed to calculate the crossflow Reynolds number on a circular
leading edge by means of Reshotko and Beckwith's (ref. 6) stagnation~line
solution for a swept circular cylinder. It is assumed that the form of
dimensionless velocity profile is unaltered around the semicircular leading
edge, and that the boundary~layer thickness over the leading edge is
constant and equal to the stagnation-line value. The velocity profile
assumption has only limited range of validity in the exact sense (ref. 6),
but for engineering accuracy the results indicate it may be fairly good
over the entire leading edgei The boundary-layer thickness assumption is
also limited in the exact sense; however, calculations performed on a
hemisphere (ref. 7) show increases of less than 30 percent of the
stagnation-point boundary-layer thickness over most of the hemisphere.

The growth of the boundary layer on a circular cylinder would probably
be somewhat larger because of the divergence exhibited by the flow field
around a hemisphere. However, it was thought that for a first approxima-
tion the simpler approach would be adequate. These assumptions, along
with perfect gas relations and a power law dependence of viscosity on
temperature mey be used to write the crossflow Reynolds number:

/2 W+1 w-1
2 2
b <%w £> BraxiB (To/Te) 2 (Z/To)

‘ (2)
[G(p. /D) 172

where B and G are defined in appendix A; Bp.y, the maximum value of the
crossflow velocity ratio, is found by the method given in appendix B; and
H, the ratio of local to free~stream unit Reynolds number, is given by
equatiocn (CM) of appendix C. The details of the development of equation
(2) may be found in appendixes A, B, and C.

Equation (2) is similar in form to an equation derived in reference 8
for a swept circular cylinder in incompressible flow. Equation (2), how-
ever, is for supersonic flow with heat transfer and therefore includes
effects of Mach number and temperature ratio, not considered in
reference 8.

Presented in figure 1 is an example of the crossflow properties
calculated by the method described in appendixes A, B, and C; a leading-
edge sweep on 600, free-stream Mach number of 7.0, and a ratio of wall
temperature to total temperature of 0.60 were used for the example.
Figure l(a) shows maximum values of the crossflow velocity ratio, Brax’
as a function of the body coordinate, 6. Figure 1(b) shows the value of
X/[Rm(D/x)]l/Z as a function of 6, also. A maximum value of
X/[Ro(D/x)1¥2 occurs at 6 = 60°. This would indicate that transition
could move rapidly to this point rather than approach this point continu-
ously from the downstream side.



With the aid of equation (2) and available experimental data (refs. 8
to 11) it was possible to evaluate critical values of crossflow Reynolds
number for swept circular cylinders in supersonic flow. Maximum values of
crossflow Reynolds number were computed for the test conditions of refer-
ences 8 through 11 and compared with the state of the boundary layer
(i.e., laminar or turbulent) on the leading edge.

The actual state of the boundary layer o the leading edge was not
given directly in references 8 to 11 but could be inferred from a compari-
son of the heat-transfer data with heat~transter values predicted from well-
established laminar heat-transfer theories. The boundary layer was
considered to be turbulent if the heat transfer was appreciably higher
than laminar theory would predict. Data about which there was doubt as
to the state of the boundary layer were designhated transitional. There
was some question as to the interpretation of a result from reference 10
at a Mach number of 6.9 and a sweep angle of '"5°. Feller (ref. 10)
indicates that three~-dimensional effects due ;0 the apex at large sweep
angles accounted for the higher heat transfer. These data were analyzed
also by Goodwin and Creager (ref. 11) who showed that not only was the
datum at 75° of sweep considerably above the aminar theoretical predictions
but that the datum for 60° of sweep also deviited from the laminar theory.
It seems unlikely that the datum for 60° of sweep 1s influenced by the
apex. This becomes more evident on comparing the region of influence of
the apex (i.e., the Mach cone from the apex) ind the apex angle, 8.25°
and 30°, respectively. It is therefore felt “hat the high heat transfer
at 75° of sweep is not due to the apex but is a result of increased extent
of turbulent flow which has already begun to show itself at 60° of sweep.
On this basis, the data of reference 10 at 60° and 75° of sweep were inter-
prreted as transitional and turbulent, respectively.

The results are presented in table I and in figure 2, where the
maximum calculated value of crossflow Reynolds number occurring on the
leading edge, for each test condition, is plo:ted as a function of free-
stream Mach number. The solid symbols repres-snt cases of turbulent
boundary-layer flow; the open symbols, lamina.’; and the half-filled symbols,
transitional. Included for comparison in figire 2 are the critical values
determined by Owen and Randall (ref. 1) and b/ Boltz, Kenyon, and Allen
(ref. 4). These values are represented by lines and cross-hatched areas,
respectively. The comparison with the higher Mach number data appears to
indicate that these critical values are constunt over a considerable Mach
number range .

Values of crossflow Reynolds number of li:ss than 100 appear to give
reasonable assurance of complete laminar flow on the leading edge.

Crossflow downstream of the leading edge.- If the boundary layer on
the leading edge is not destabilized sufficiently for transition to be
caused by crossflow, transition may still be :sused by crossflow farther
back on the wing, provided, of course, that the streamwise velocity




profile does not become unstable first. Because of the complexity of
the exact compressible laminar-boundary-layer equations for a general
surface, no simple formula for determining the crossflow in this area
seems possible. However, a relationship between the crossflow Reynolds
number, X, the local Reynolds number, Re, and the crossflow velocity
ratio, Bmax, can be established from which, with the aid of experimental
results, 1t is possible to estimate the amount of crossflow necessary

to cause transition.

If we assume that the boundary-layer thickness for a swept wing can
be given approximately by the flat-plate two-dimensional values, that is,

5 = Kx/JRe (3)

where K = K(Me, TW/TO) as defined in reference 12, the crossflow Reynolds
number may be written

X = K [Fs P (3

In figure 3 values of the crossflow velocity ratio, Byax, calculated
using equation (4), are plotted as a function of local Reynolds number
for a critical crossflow Reynolds number of 175 and values of K of 8 and
10. The curves in this figure, which represent transition Reynolds number
as a function of the crossflow parameter, show that even relatively small
values of the crossflow parameter result in small values of transition
Reynolds number (e.g., if X = 10 and Bpgx = 0.01, the Rp = 3 million).
At this point we still cannot use equation (4) to calculate transition
Reynolds number because of the complexity of calculating Bmax- However,
if experimental transition Reynolds numbers are used, where transition
is thought to be controlled by crossflow, the crossflow velocity that
caused transition in these experiments may be estimated.

References 13 and 14 give values of transition Reynolds numbers for
tests where transition was considered to be controlled by crossflow. In
reference 13 the value of transition Reynolds number for a wing with 75°
of sweep, a biconvex airfoil section at a Mach number of 5.35, and a wall-
to-total-temperature ratio of 0.27 was given as 4.36 million. Similarly,
in reference 1k, for a wing with 60° of sweep, an NACA 65A004 airfoil
section at a Mach number of 4.04, and a wall-to-total-temperature ratio
of about 1, the transition Reynolds number was given as 0.95 million.
With these data and equation (h) the values of the crossflow velocity
that caused transition are estimated to be 1.0 and 1.8 percent of the
local velocity for the tests of references 13 and 1k, respectively.

Considering the small amount of crossflow needed to cause transition,
it is felt that the transition Reynolds number could be evalusted for wings
if crossflow were assumed to be small. This should make it easier to
solve the compressible boundary-layer equations for the crossflow velocity
ratio, Bypax- Furthermore, it may be concluded that on wings with large



spanwise pressure gradients, transition is more likely to be caused by
instability of the crossflow than by instability of the streamwise velocity
profile (i.e., Tollmien-Schlichting instability) because of the extremely
small amount of crossflow needed to cause transition at small values of

the local Reynolds number.

Shock Strength Effecis

Another effect of sweep on transition is associated with the reduction
in strength of the leading-edge shock wave. This effect always occurs with
blunt wings with supersonic leading edges and must be considered with both
crossflow instability and Tollmien-Schlichting instability. The effects
of shock strength on flow properties are well known, as are the effects
of shock strength on transition caused by Tollmien-Schlichting instability.
However, a brief discussion of each will be presented here to clarify
further the effects of shock strength on crosuflow instability, as well
as to allow for a discussion of a hypothetical. example involving both
types of instability.

The effect of shock strength is to incresse entropy and thus to alter
the flow properties downstream of the shock weve. The greatest change in
flow properties occurs behind the strongest portion of the shock wave.
This change results in a relatively thin layer over the surface of a wing,
downstream of a blunt leading edge, within which the flow properties are
significantly different from those in the outer flow field. Within this
so-called high-entropy layer, the local unit llieynolds number is lower than
it would have been in the absence of the high-entropy layer. Hence, in
general, transition is delayed and more laminer flow results. This phenom-
enon was first studied theoretically by Moeckel (ref. 2) with regard to
the blunting of wedges and cones and was Observed experimentally by
Brinnich and others (refs. 14 to 16).

The effectiveness of the high-entropy lajer in delaying transition
depends upon its thickness relative to the boindary-layer thickness.
Based on the experimental results of references 14 to 16, figure 4 shows
that when the high-entropy layer thickness, v (referred to as low Mach
number layer in ref. 2) computed by the methoc. of reference 2, exceeds 30
to 40 percent of the boundary-layer thickness. computed by the method of
reference 12, no further delay of transition cccurs with further thickening
of the high-entropy layer. This method of presentation is preferred to
the method of displacing the outer edge of the high-entropy layer by the
displacement thickness of the boundary layer es it is felt that the latter
loses physical significance for high-entropy _ayers thinner than the
boundary layer. Figure 4 also indicates that a straight line approximation
between 7/6 of 0 and 35 percent could be used for rough estimates of
intermediate values of transition Reynolds number.
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It is evident that if an unswept wing, which has been blunted suffi=-
ciently to obtain full benefit of the high-entropy layer, is swept back,
the shock strength decreases, resulting in an increase in the local unit
Reynolds number and a change in the shear-layer thickness. How these
changes effect transition depends on the type of instability controlling
transition. However, for the purpose of further discussions we will
agssume that the high-entropy layer is fully effective at all sweep angles.

The effects of changes in shock strength, due to sweep, on transition
controlled by Tollmien-Schlichting instability were discussed briefly by
Beckwith and Gallagher (ref. 8). Their results were for a specific test
condition, with no explicit details as to how the calculations were made.
However, it is a simple matter to derive a relationship for the length of
laminar flow for swept wings, assuming that the transition Reynolds number
based on local properties is constant. This 1s done in appendix C, where
it is shown that the ratio of length of laminar flow, x;, for arbitrary
sweep to that at zero sweep, <XZ)A=OJ for a slightly blunted flat plat at

a constant free-stream unit Reynolds number is given by

20+1
y-1 2 2
Galy  (Medyg |1+ 5 M)y, (5)
= ~ 5
(adpg () | 1y 12—1 (M),

where the values of local Mach number, Ms, for both the swept and the
unswept case are found using the relations given by equations (c11).

In figure 5 are plotted solutions of equation (5) as a function of
sweep angle for various free-stream Mach numbers (7 = 1.4, w = 0.8). It
is seen that the relative length of laminar flow decreases very rapidly
with increasing sweep. It also shows that this relative decrease is more
rapid for higher Mach numbers. It should be noted, however, that the
normalizing length of laminar flow, (XZ)Azo’ in eguation (5) is a function

of the free-stream Mach number; therefore figure 5 should not be used to
determine the effect of Mach number at a fixed sweep angle on the length
of laminar flow, Xy The same approach as in appendix C can be used to
give the ratic of length of laminar flow at an arbitrary Mach number, X5
to length of laminar flow when the normal Mach number is unity, (XZ)M s

=1
for a swept flat plate,
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Xy M 1+

e (6)

where M, for arbitrary free-stream Mach number greater than l/cos A
is found from the relations given by equations (Cll). In the derivation
of equation (6) it is assumed that the only effect of Mach number is to
change the leading-edge shock-wave strength. Results of equation (6)
are presented in figure 6 as a function of free-stream Mach number for
fixed values of sweep angle. A strong increase in the length of laminar
flow, x;, with increasing Mach number is evident. The curve for zero
sweep is similar to one given by Moeckel (ref. 2).

The effect of shock strength on the crossflow Reynolds nunmber on the
leading edge, and thereby on transition caused by crossflow instability,
is given implicitly in equation (2). For the :ase of crossflow instability
downstream of the leading edge, the effect of shock strength on the length
of laminar flow is not as simple as for the case of transition caused by
Tollmien-Schlichting instability. This is due to the fact that the cross-
flow velocity ratio, Bpayx, veries with distance from the leading edge as
well as with many other factors. Since no similarity-type solutions exist
at present for calculating Bpgx, each case has to be treated separately.
However, it was shown in equation (4) that the crossflow Reynolds number,
downstream of the leading edge, was proportionil to the local Reynolds
number to the 1/2 power. Hence, it would appeir that influence of shock
strength on transition caused by crossflow will not be as strong as on
transition controlled by Tollmien-Schlichting instability.

Up to this point the effects of shock strength on transition have
been treated separately for crossflow instability and Tollmien-Schlichting
instability. However, in the course of a test or flight of a vehicle,
both types of instability may exist. In addition, the type controlling
transition may change during the course of a flight. As an example of
this, consider a variable sweep wing operating at a constant Mach number.
At zero sweep, transition is generally controlled by Tollmien~Schlichting
instability. As the wing is swept back, transition will move forward as
a result of the reduced shock strength (see sk:tch (b)). When at some
point upstream of the transition front, the critical crossflow Reynolds
number is exceeded, transition moves forward rapidly. As the wing is
swept further, transition continues to move fo-ward, because of the
reduced shock strength and increased crossflow, until at some higher
sweep angle, provided the flight Reynolds number based on the leading-
edge diameter is large enough, the crossflow becomes critical at the lead-
ing edge. Here transition again moves rapidly forward.

[ N



Oy

11

i Critical crossflow Reynolds number exceeded
/ downstream of leading edge

|
Xl 1

! Critical crossflow Reynolds number exceeded
\/ downstream of leading edge

Y

Sketch (b)
This last step implies that there can be two peaks in the curve of

crossflow Reynolds number as a function of distance downstream of the
leading edge (see sketch (c)). Sketch (c¢) shows a possible streamwise

J o :
} Direction of increasing sweep

Critical value of X

X -

Y

Sketch (c)

distribution of crossflow Reynolds number over a wing. Whether two peaks
should exist in this variation is not known at this time; however, it
appears possible, if a sudden drop in X around the leading edge exists,
as exhibited in figure l(b), and only a very small amount of crossflow
velocity is required to obtain a critical value of ¥ 1in regions where

the boundary layer is thick (i.e., regions far downstream of the leading
edge). The trend with sweep angle given in sketch (c) may be qualitatively
correct for moderate values of sweep; however, the trend will differ for
large values of sweep because at 90° there is no crossflow.

We will now examine the experimental evidence available, to see
whether the effects of shock strength on transition and the changes in
stability mechanism, as presented here, are consistent with available data.
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Experimental evidence.- Shown in figure " are some available experi-

mental results (refs. 15 and 16) for Mach numters 3.0 and 4.0. Included
in these results are transition results for bcth blunt flat plates (i.e.,
zero spanwise pressure gradient for regions ferther than 20 to 30 leading-
edge diameters downstream of the leading edge) and for contoured airfoils
(i.e., strong spanwise pressure gradients). Also shown are the theoretical
curves for the effect of shock strength on length of laminar flow. The
value of w, the exponent in the viscosity relationship used in the shock
strength equation, was chosen to correspond to the average temperature of
the experimental tests of references 15 and 16.

Comparison of the theoretical shock strength predictions with the
results of references 15 and 16 for blunt swept flat plates at Mach
numbers 2.0, 2.5, 3.0, and 4.0 has been made ia references 8 and 16;
therefore, it will suffice here to say that, ia general, these results
agree with the theoretical predictions, provid=d the leading-edge diameter
1s large enough to give a fully effective high-entropy layer, but not so
large to cause crossflow instability. The modals with leading-edge
diameters between 0.002 and 0.005 inch appear to be near this proper
leading-edge size. The model with the sharper leading edge had insuffi-
cient bluntness and the changes in the length o>f laminar flow with sweep
were smaller than would be predicted by theory.

= N

For the case of strong spanwise pressure Jradients, transition is
usually controlled by crossflow instability. "he results of reference 15
(for an NACA 65A00k4 airfoil at a Mach number o L.ok) as well as the
results of reference 16 (for the bluntest flat plate) are examples of
transition which is probably controlled by crossflow. The results for
the airfoll have been normalized by the length of laminar flow for a sweep
angle of 12.50 since no results were available at a sweep angle of 0Q°.
These data probably would be somewhat lower if nermalized by the length
at a sweep angle of 0°; however, the relative changes with sweep would be
the same. It was pointed out in the discussiorn that effects of changes
in local Reynolds number, due to shock strengtl., on the relative length
of laminar flow, would be less for transition controlled by crossflow
than for that caused by Tollmien-Schlichting irstability. This is not
borne out by the results shown in figure 7. Here the measured relative
change in length of laminar flow, due to sweeping either the contoured
airfoil or the bluntest flat plate from 450 to 600, is approximately the
same as predicted by the shock-loss method witlh only Tollmien-Schlichting
instability considered. This might be explained by the fact that the
crossflow velocity ratio is a function of distance downstream of the
leading edge, thereby resulting in larger changes in the length of laminar
flow with sweep than could be explained by only Reynolds number changes.

Although the data points are not close encugh together to allow for
an accurate determination of the sweep angle at which the mechanism
controlling transition changes (if it changes at all), there is a larger
reduction in the length of laminar flow at sweep angles less than 300
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than can be explained by shock-loss considerations for both the contoured
airfoil at Mach number L4.0L4 and the flat plate with the bluntest leading
edge at Mach numbers 3.0 and It,0. These changes, however, do not appear
to be discontinuous as suggested in sketch (b).

SUMMARY OF RESULTS

In the preceding discussion the effects of crossflow and shock
strength on boundary-layer transition on swept wings, at supersonic speeds,
were analyzed. Following are some of the important points resulting from
this analysis.

1. The crossflow stability criterion of Owen and Randall was found
to apply apparently without change on cylindrical leading edges for Mach
numbers from subsonic to 7. A simplified method of calculating the cross=-
flow Reynolds number on circular leading edges was developed and applied
+to obtain the above result. The amount of crossflow needed to induce
crossflow instability downstream of the leading edge was found to be very
small - on the order of 1 to 2 percent of free-stream velocity for the
conditions considered.

2. The theory based on the shock-strength considerations appears to
predict the changes in length of laminar flow due to sweep for blunted
flat plates, if the leading edge 1is blunt enough to provide a sufficiently
thick high entropy layer but not so blunt as to result in change of the
mechanism controlling transition. For the case of these flat plates with
blunter leading edges and also for wings with large spanwise pressure
gradients, the theory underpredicts the changes in length of laminar flow
due to sweep.

Ames Research Center
National Aeronautics and Space Administration
Moffett Field, Calif., July 20, 1961
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APPENDIX A

THE CALCULATION OF THE CROSSFLOW REYNOLDS NUMBER

FOR A SWEPT SEMICIRCULAR LEAD.NG FDGE

The crossflow Reynolds number, as definec by eguation (1) of the text,
may be rewritten as

PalUe ¥,
X = ere I’IJ.&.X6 (/—U.)
He o Ue
Now let
PeUe  Re
He X
and
Ymax _
Ue "Bmax

Then equation (Al) may be written

Re

X = = Brayd (42)

The crossflow velocity ratio, Bmax, may be calculated by the method
described in appendix B for swept semicircular leading edges.

The value of the local unit Reynolds number may be related to that of
the free stream. This is done in appendix C and may be expressed

R R

e = -;”

— = 2K (43)
where H is defined by equation (4) of append:x C. The value of the
local static pressure and local Mach number car. be obtained, with satis-
factory accuracy for the front part of a cylinc¢er, from the modified
Newtonian pressure distribution given in reference 9:

P
£ = <} - E%) cos29 4+ i (A%)
where P, 1s the static pressure on the stagnation line.

The only remaining quantity to be determinad is the boundary-layer

thickness, 8. For the case of a circular leadiag edge, & is assumed to
be constant and equal to the stagnation-line value. This approximation

H Oy
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holds for a large portion of a blunt leading edge normal to the free
stream and is assumed to hold for swept leading edges. The value at the
stagnation line is given in reference 6 as

B(TW/TO)—l

= (A5)
J(Uopnr/ 1, D) [ (D/ U (€U /6x) ]

o

where B, the boundary-layer thickness parameter is the integral through
the boundary layer of a function of enthalpy which appears in eguation 56
of reference 6. The velocity gradient parameter

G == — (46)

is determined by equations 62 and 63 of reference 6. Values of B and
G are plotted as functions of the flow parameters in reference 6. The
equation of state for a perfect gas and the viscosity relationship

Ho= R (%)w (AT)

may be used to write the boundary-layer thickness as:

1 W-1 w+1
_ BDE(Ty/To) # (To/Tw) ®
- 1

11 (a8)
(Ry/%) 262 (5 /Pur)

We may now write the expression for the crossflow Reynolds number on a
swept circular leading edge:
W+ 1 w-1

X (To/Te) ® (Ty/To) 2 —— (19)

JR.(D/x) JG(Ps/Po)

where the quantities H and Bmax are functions of free-sgstream Mach
nunber, sweep angle, ratio of wall-to-free-stream total temperature, and
local flow properties. All other quantities are functions of all the
things listed above except the local flow properties.
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THE CALCULATION OF THE CROSSFLOW VELOCITY RATIO B

In finding the value of the crossflow vel
stagnation-line solutions (ref. 6) for the vel
normal to the leading edge, are used over the
results are shifted to a different set of coor
to the local boundary-layer-edge streamline as

APPENDIX B

!

where
and
Therefore,
U/ Ve
W
W/Ue

I

Leading edge

1,2

sin b (£'% + g2cot2p)

U sin a

12
sin a sin b (f'% + g2cct2@b) /

ocity ratio, B = w/Ué, the
ocity profile, parallel and
entire leading edge.
dinates, along and normal
shown below

The

H O\ = =

(B1)

(B2) -

(B3)
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where f' and g are obtained from reference 6 and are functions of Iﬁ/To,
My A, Prandtl number, and the distance normal to surface. The angle b

is a function of the potential flow and may be determined from the pres-
sure distribution. The velocity component parallel to the shock wave,
which is unaltered as it passes through the shock, is also assumed to
remain the same around the leading edge. This is true for a wing extend-
ing to infinity in both directions. The total velocity may be found from
the pressure distribution given by equation (A4). This is done by changing
the pressure ratio from a ratic of static pressures, pe/ps, to a ratioc of
static pressure to total pressure downstream of the shock, Pe/Py- From
this ratio the resultant Mach number, and thus the resultant velocity,

may be obtalned. The ratio of velocity parallel to the shock wave to the
total velocity is the cosine of angle b. Angle a 1s a function of both
angle b and the boundary-layer 1low angle c. The relationship is as
follows:

tan ¢ =-£?tan b (B4)
and
c=a+b
therefore

(tan ©)[(£'/g) - 1]
tan a = (B5)
1+ (f'/g) tan®p

The crossflow velocity profile may be obtained from equations (B3)
and (B5). Figure 8 shows some typical crossflow profiles for the case
of a sweep angle of 75° temperature ratio equal to zero, and a local stream
angle of 10°. Curves are presented for various Mach numbers.
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APPENDIX C

THE EFFECT OF SHOCK STRENGTH ON LENGTH OF LAMINAR RUN

The expression for the Reynolds number

pUx
R = Cl
: (c)

may be rewritten in terms of
U = M7ST (C2a)
p = p/sST (C2p)
w

wo=p (T/T) (cac)

to give
W
pM<Too> [7
R = = | == C
o \T 57 X (c3)

where S 1is the gas constant. If we now take the ratio of local to
free-stream unit Reynolds number, we obtaini
2u)+:’__

Re/x__P_G%Goo-?= i
Ra/x ) Poo My _;9 8 (C )

Now teking the value of equation (Ch) for a given sweep angle and
dividing by the value of equation (Ch) at zero sweep, we get

@z/ﬁj\. ) @2),\ ) (PeMa)p  [(Te)asg zw;l
e, ), L
-0 -0

Assuming that the transition Reynolds number Re 1s a constant based
on x; to transition, then

(cs)

(Re)p

- 6
(Re)Azo ! <C )

H o\
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and therefore

(XZ)A _ (Re/X)A=O (07)

(XZ)A=O (Re/X)A

Now from equations (05) and (C7) the ratio of the length of laminar flow
for a given sweep angle to that for zero sweep is

2W+1
2

(c8)

(1), (M), |2+ 55 ()i
7

(x1),g  (PeMe)y | 1+ 5= ()

The values of static pressure and Mach numbers are functions of shock
strength and geometry of the body. The shock strength 1s determined by
the normal Mach number.

- Equation (C8) may be simplified by the following assumptions:

(l) The flat plate, is sufficiently blunt that the length of laminar
flow i1s maximum.

(2) The shock wave lies parallel to the leading edge (up to the
point where normal Mach number equals 1) when the wing is swept.

(3) The region considered is sufficiently far behind the leading
edge (20 to 30 leading-edge thicknesses) that the static pressure has
reached the free-stream value.

Using these assumptions, equation (C9) reduces to:

2w+l
2

(1), () |1+ 57 Ohdig (o)
()pg Medy |1+ Z—; (M)

where the Mach numbers may be determined from reference 17 by evaluating

the following functions
b
Mg = <-p—6— (c10)

= 2 (Cc11a)
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22 - p() (c11b)
oo

i

L2 = (M, cos A) (clic)
pte

The ideas introduced in equation (C6) anc. following have significance
only with respect to Tollmien-Schlichting type instability.

= ON = >
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Figure 5.~ Effect of shock strength on normalized length of laminar flow.
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Figure 6.~ Effect of shock strength on normalized length of laminar

flow at constant sweep angle.
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Figure 7.- The effects of sweep on the normalized length of laminar flow.
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